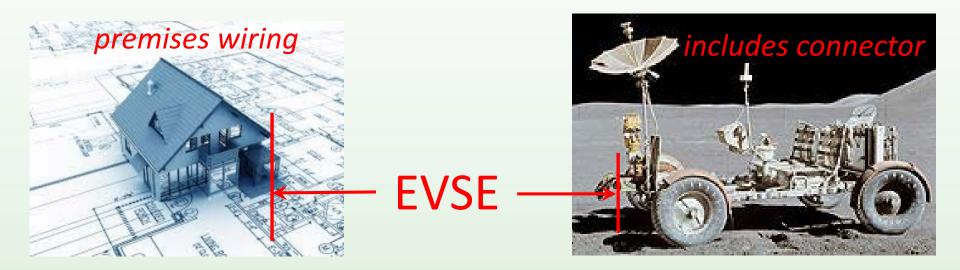


EVSE Technology, Deployment, and the Grid

Richard Raustad EVTC Program Director


Topic Areas

- EVSE Technology
 - Definition
 - Standards
 - **Components and Options**
- EVSE Deployment
 - Charge Rate and Cost
 - **Utility Billing Metrics**
 - **Demand Management Strategies**
- Utility Grid Modernization
 Performance Monitoring
 Two-way Communication

EVSE Technology

Electric Vehicle Supply Equipment (EVSE)

The conductors, connectors and plugs (coupler), and other devices required to deliver energy from the **premises wiring** to the **electric vehicle**.

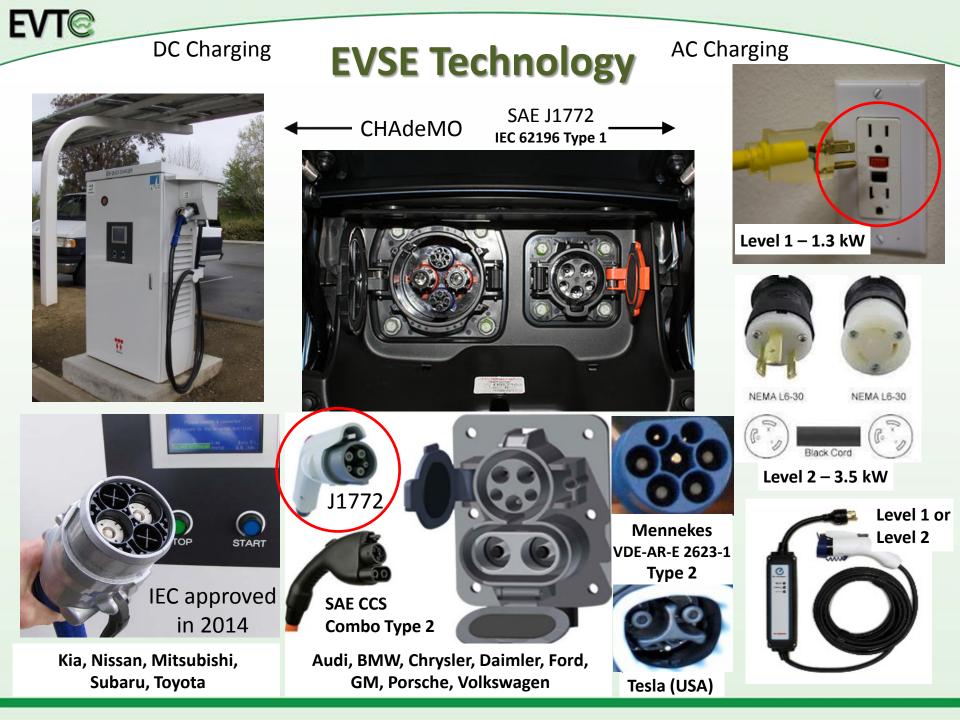
EVSE Standard – SAE J1772 (2012)

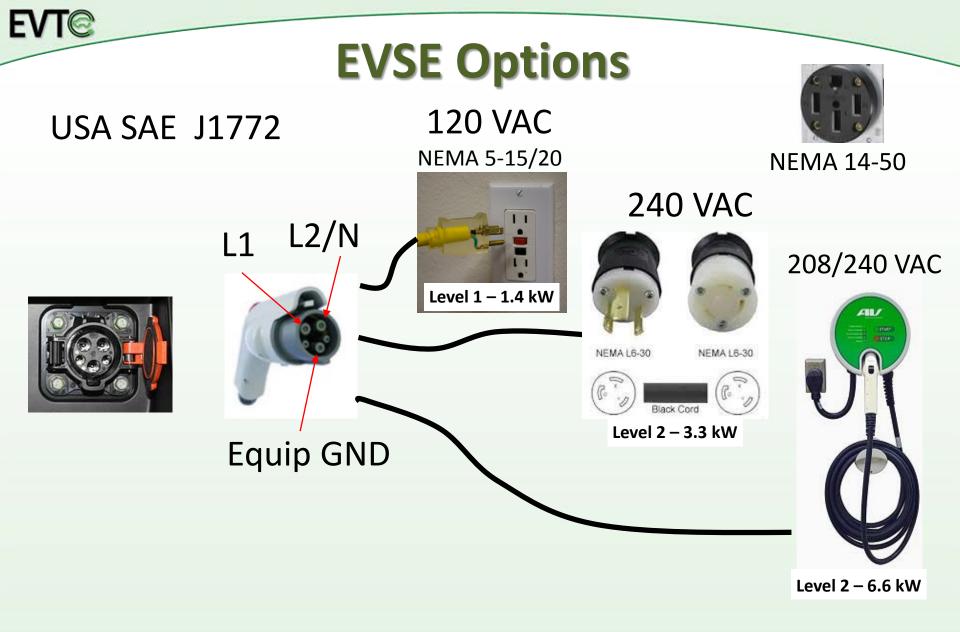
"Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler"

- Defines AC Level 1 and 2
- Specifies a coupler and interface
- Includes specification for DC charging
- DC Level 1 coupler is identical to AC Level 1/2
- DC Level 2 includes 2 high current conductors.

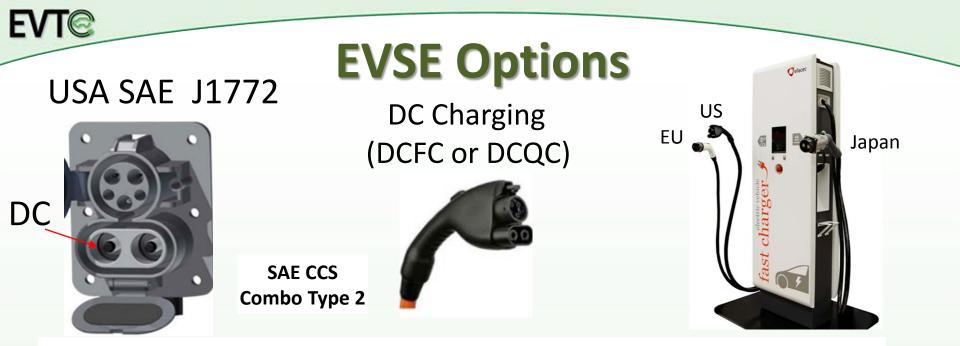
Electric Vehicle Supply Equipment

• SAE J1772 - Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler


-	AC Level 1	120 VAC	≤ 16 Amps
-	AC Level 2	208-240 VAC	≤ 80 Amps


AC Level 3 (TBD)

IC


-	DC Level 1	200-500 VDC	≤ 80 Amps
_	DC Level 2	200-500 VDC	≤ 200 Amps

DC Level 3 (TBD)

AC Level 1 and 2 - All Electric Vehicles

Audi, BMW, Chrysler, Daimler, Ford, GM, Porsche, Volkswagen

Kia, Nissan, Mitsubishi, Subaru, Toyota

EV Wireless Charging Station

• Drive up and charge

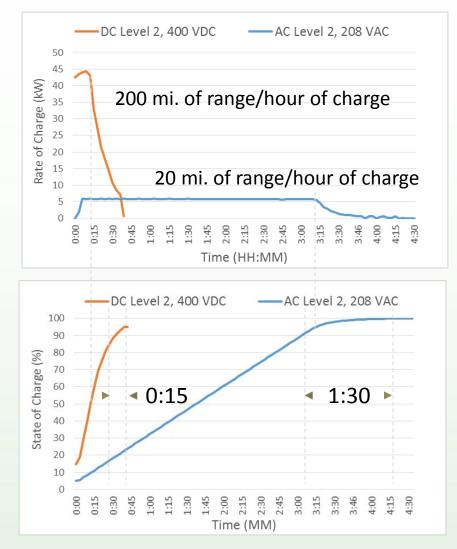
EVT©

- No cord to plug in or unplug
- Self-guiding alignment

Wall-mount Controller Transmitter (grey) Receiver (black) 20 kHz resonant frequency

EV Wireless Laboratory

3.3 kW


32.16

- Electric and Magnetic Field (X, Y, Z) Measurements
- Spacing and Alignment Testing
- Infrared Imaging

EVT©

Application Assessment

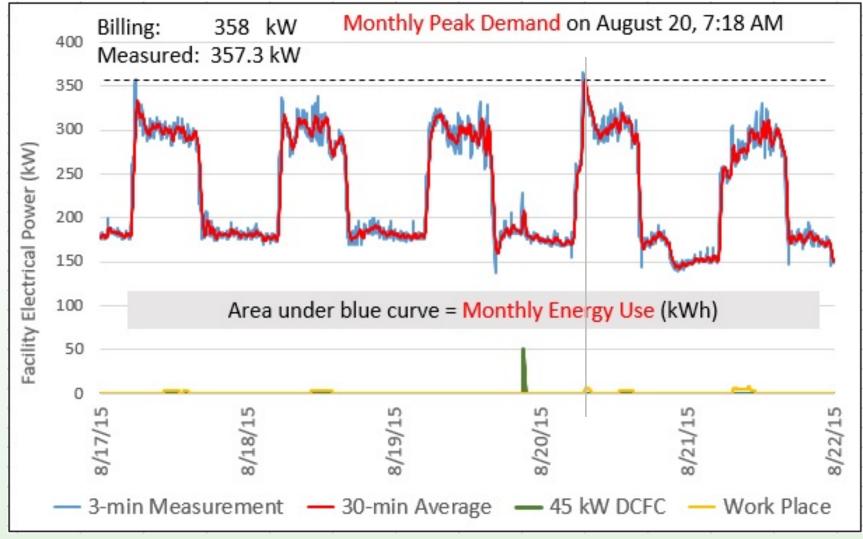
EV Charging Rates

Nissan Leaf: 24 kWh Traction Battery

Level 2:

- Slow rate of charge (0.25C)
- Continuous charge rate up to 95% SOC
- Last 10% of charge takes 1 hour 30 min

DCFC:


- High rate of charge (2C)
- Continuous charge rate up to 50% SOC
- Last 10% of charge takes 15 min

Demand reading KW constant Demand kW 1.49 x 240.00

358

Utility Billing Metrics

EVT©

September 2015 Electric Billing – Week of Monthly Peak Demand, Aug 17-21

Utility Cost

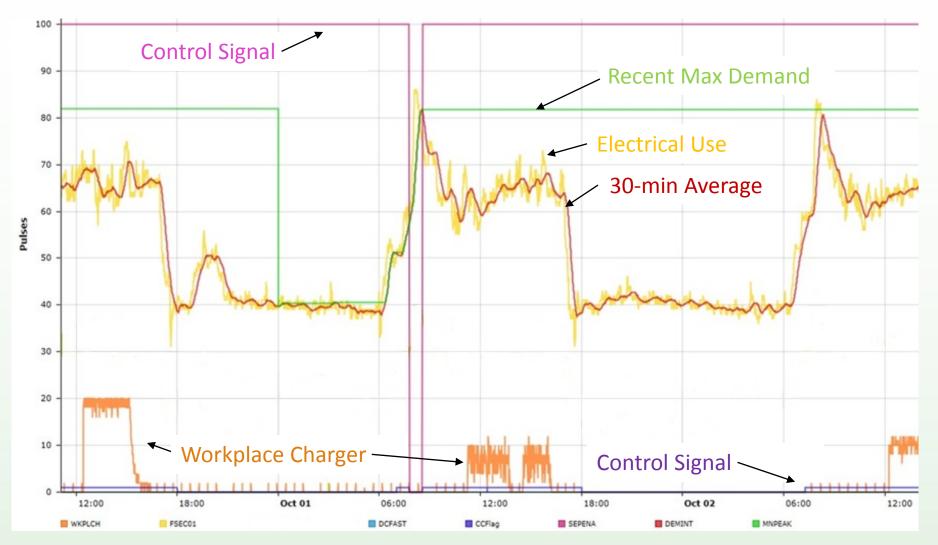
EVT©

FPL Rate Class - Sep 2015	Customer Charge	Demand	On-Peak Energy	Off-Peak Energy
	\$/mo	\$/kW	¢/k	Wh
Residential (> 1000 kWh/mo)	7.57		10.12	
General Service Non-Demand	7.46		9.347	
General Service Demand	19.48	9.94	5.901	
To Fully Charge a Nissan Loof				
To Fully Charge a Nissan Leaf:				
Residential (> 1000 kWh/mo)			\$2.02	
General Service Non-Demand			\$1.87	
General Service Demand		???	\$1.18	

Energy charge includes storm, conservation, environmental, and fuel charges

Impact of Monthly Demand

E

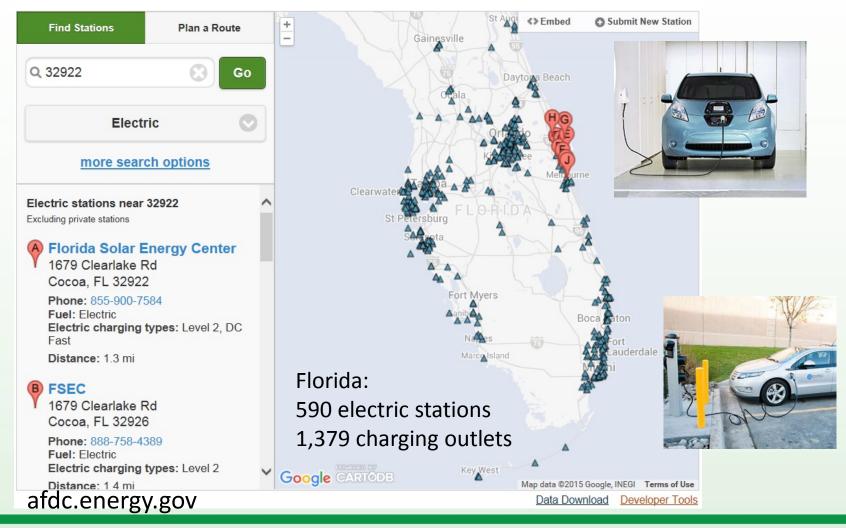

Month	Billing	No DCFC	Diff	Cost	No WkPlc	Diff	Cost
(2015)	kW	kW	kW	\$	kW	kW	\$
Feb	278.4	255.0	23.4	248	253.1	1.9	20
Mar	285.8	283.7	2.1	22	283.7	0.0	0
Apr	322.4	322.4	0.0	0	316.5	5.9	63
May	331.6	331.6	0.0	0	331.6	0.0	0
June	339.8	339.8	0.0	0	339.8	0.0	0
July	368.2	368.2	0.0	0	368.2	0.0	0
Aug	357.3	357.3	0.0	0	356.0	1.3	14
Sep	354.24	354.24	0.0	0	354.2	0.0	0

Monthly electric billing impact of public DCFC and workplace chargers

- Prior to Sep 2015, monthly demand chargers were \$10.61/kW
- FSEC workplace chargers include 2 Level 2 J1772 @ 6 kW each

Building Demand Management

EVT©

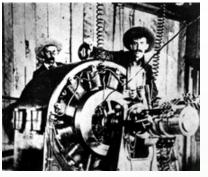


EVSE Deployment

Electric Vehicle Charging Station Locations

EVT©

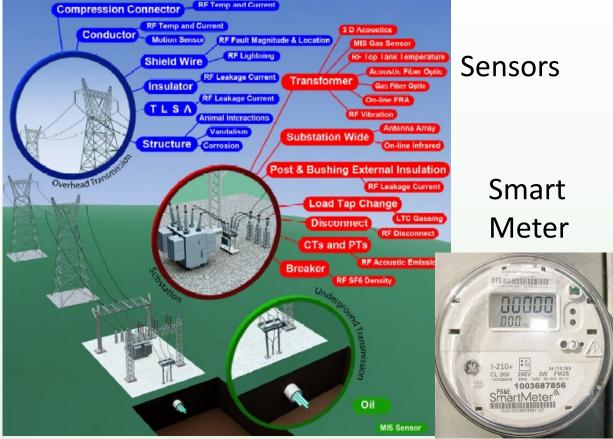
Find electric vehicle charging stations near an address or ZIP code or along a route in the United States. For more alternative fueling stations, use the <u>Alternative Fueling Station Locator</u>.



Utility Grid

How far we've come:

Steam Turbine



EVT©

Sensor Technologies for a Smart Transmission System, EPRI, 2009

Utility Grid Sensors

EVT©

Overhead Transmission Sensors

Compression Connector	RF Temperature and Current		
Conductor	RF Temperature and Current		
Conductor	Motion Sensor		
Shield Wire	RF Lightning		
Insulator	RF Leakage Current		
TL Surge Arrestor	RF Leakage Current		
	Animal Interactions		
Structure	Vandalism		
	Corrosion		

Utility Grid Sensors

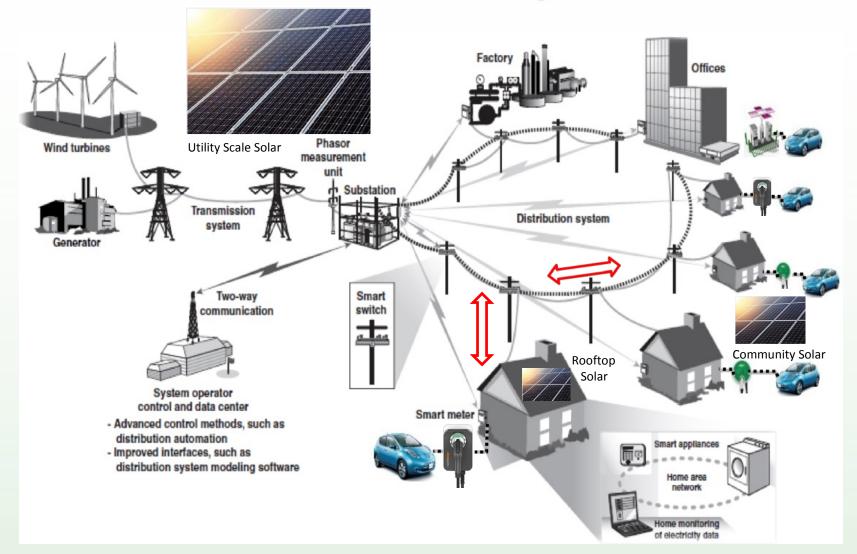
Substation Sensors

I and	3D Acoustics				
	Metal-Insulator-Semiconductor Gas Sensor				
	RF Top Tank Temperature				
Transformer	On-line Frequency Response Analysis				
	RF Vibration				
Substation Wide	Antenna Array				
Substation wide	On-line Infrared				
Post & Bushing Insul.	RF Leakage Current				
Load Tap Change	LTC Gassing				
Disconnect	RF Disconnect				
CT's and PT's	RF Acoustic Emissions				
Breaker	RF Sulfur Hexafluoride (SF6) Density				

Modern Utility Grid

Real Time Transmission System Performance Measurement

- Voltage and Current
- Power Factor
- Harmonic Distortion
- Real and Reactive Power
- Real and Reactive Energy


Transmission System, e.g., QinetiQ North America

Distribution System, e.g., QinetiQ North America

Modern Utility Grid

EVT©

EV's in the Future Utility Grid

Real Time Control of Distributed Resources

Ancillary Services Market (50 EV's = 1 MW)

Load Regulation

Frequency control (minimal impact on EV battery)

Spinning Reserves

Offsets intermittent generation (wind and solar)

Localized Load

- Store on-site PV/Wind production
- Eliminates distribution system reverse power flow

Second Use Traction Battery Market

- Same as Distributed Energy Storage
- Lowers cost of EV

DOE's EV Everywhere Grand Challenge

Batteries

EVT©

- Electric Drive Systems
- Vehicle Lightweighting
- Efficient Climate Control
- Charging Infrastructure

DOT's EVTC Research - Labs

- Electric Vehicle Lab
- Wireless Lab
- HI Battery Durability Lab
- TU Battery Performance Lab
- EV Charger Measurements

DOT's EVTC Research - Modeling

- Life Cycle Cost Analysis
- Electric Grid Interactions
- Peak Demand Mitigation
- EV Queueing Models
- FC Range Extender and Power Supply
- Societal Benefits

DOT's EVTC Research - Planning

- Charger Deployment
- Standards and Policy
- EV Forecasting
- Fleet Vehicle Analysis
- Traffic Databases

EVT© **Thank You Richard Raustad** rraustad@fsec.ucf.edu Power, supply (to transmitter pads) Transmitter pads **Battery** Receiver pad